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Presenter
John D. Wrbanek

« NASA Glenn Research Center since 2000

— Physics background
— Previously at AFRL (plasma physics research & technology) and
FNAL (particle beam optical systems)
* Physical Sensors Instrumentation Research @ NASA GRC

— Micro-fabricated thin-film sensor technology for temperature, strain,
heat flux, and radiation measurement for aerospace systems
applications

 NASA Support for GRC’s Advanced Radiation Detector
Technology R&D:
— AEVA Power, Communications, Avionics, Informatics (2005-2007)

— ETDP/D Life Support & Habitation Systems/Radiation Protection
(2009-2011), AES Radiation Protection (2012)

— OCTICIF (2011, 2012)
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Space Radiation Environment

« Types of Radiation from Space:

— Solar Particle Events (SPE): Mostly protons, some helium ions,
at moderate energies

— Galactic Cosmic Radiation (GCR): Moderate to highly energetic
ions, Z=1—26 (Hydrogen to Iron nuclei)

— Trapped Radiation: lons and electrons from SPEs, GCR trapped,
scattered by the planetary magnetic field
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Space Radiation Environment

Impact on Air Travel

« Aircrews are considered
Radiation Workers by the FAA
due to Space Radiation exposure

— Concern for altitudes over 8 km

(26,000 ft)

— Dose at 18km (60,000 ft) altitude is
about 2x dose at 12km (40,000 ft)

— Polar routes can receive about 3x
exposure than equatorial routes

— Solar Particle Events can increase

doses 3x in flight

 Aircrew dose estimate models are
dependent on the understanding

of the space radiation
environment
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Space Radiation Environment 1sA)
Impact on Space Exploration

» Space Radiation exposure is Radiation Average
Area Exposure Rate
more pronounced beyond the

protection of Earth’s Terrestrial (background) 0.25 puSv/hr

atmosphere and magnetic Aircraft (@ 12 km) 2.7-7.4 uSv/hr

field LEO (@400 km) 2-16 uSv/hr
— SPEs introduce a large MEO (@20,000 km) 1 mSv/hr

variability to radiation dose

: Deep Space GCR 57 uSv/hr
for equipment and crew
L. Deep Space SPE —125 mSv/hr
— Radiation Doses from _ _
Europa (Jupiter orbit) 40 Sv/hr

Trapped Radiation need to
be accounted for in
traversing magnetic fields

— Variations in HZE from GCR
are not fully understood (do
the most damage)




Space Radiation Environment
Radiation Detector Issues

« EXisting space radiation data sets have gaps in energy,
lon type

« Understanding of variations in steady state and storm
conditions are limited

« Current radiation detector technology is limited in
lifetime, precision, discrimination, and directional
sensitivity by the mass, power, and volume requirements
for future missions

« Limitations of knowledge of the radiation environment
Impact:
— Space Science/Exploration: Spacecraft design and operation
— Earth Science: Heavy ion mechanisms in large-scale cloud cover
— Aeronautics: Aircraft crew rotations on intercontinental flights
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GRC Advanced Radiation Detector @
Technology Research and Development

« GRC Expertise and Facilities in: R
— Harsh Environment Thin Films ' %
— SIC Devices & Harsh Environment
Packaging
— Micro-Optics
— Space-Based Instrumentation

* These strengths are combined into an

In-house Radiation Instrumentation MISSE 7 SiC JFET & Ceramic Packaging
Research effort

(arrow) on a Rad-Hard Electronics Board

SiC radiation detector Dosimeter based on SiC diode detector In-House

for AEVA PCAI studies element for Constellation ETDP Microfabrication Facilities
demonstration /
5/14/2013 8



Application Concept: Full-Field Radiatio
Detector System

 GRC is advancing the technology to develop a low-
power radiation detector system capable of monitoring a
wide range of high energy heavy ions (HZE ions) over a
spherical (411) aspect area

* The technology applied to this 411 HZE Detector System
enables:

— Improved temperature insensitivity to changes induced by
transitions from sunlight into shadow (and vise-versa)

— Improved precision with lower mass, power and volume
requirements

— Improved radiation discrimination and directional sensitivity
— Unique monitoring of radiation environment from all directions of

the celestial sphere
/



Application Concept: Full-Field Radiati
Detector System

« Mapping of heavy ions > 100 MeV/amu
— Integrated system with solid-state Cherenkov detector and large
area detectors in surrounding wedges
« High radiation flux rates for 10+ year missions
— Precision rad-hard, thermally stable wide band gap detectors used

* Low noise, multi-directional measurements at single
locations
— Compact,
spherical
detector system

Space radiation detector with

spherical geometry
« Technology covered by U.S. Patents
7,872,750 (January 18, 2011) and
8,159,669 (April 17, 2012)

Concept illustration of 4n Space Radiation Detector System
(cables and signal conditioning not shown)



Application Concept: Full-Field Radiati
Detector System
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* Full-field ion detector system comprised of a spherical
Cherenkov detector surrounded by stacked LET detecty
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WBG LET Detectors

« Each stack of directional detectors has several Linear
Energy Transfer (LET) detectors with layers of absorbers
with a separate Trigger detector to initiate data collection

— LET detectors measure dE/dx as the ion moves through the stack

— Based on the absorber geometry, the dE/dx signal can be correlated
to ion Z and velocity

« The Wide Band Gap (WBG) semiconductor SiC selected for
the LET detectors
— Resistance to radiation damage
— Insensitivity to changes in temperature
— Demonstrated performance in the ETDP dosimeter

« Detectors up to 450 mm? required — Fabrication Options:
— Large area array of 4 mm?2 diodes as used in the dosimeter

— Large area detector from a single-crystal SiC wafer /
12



Fast Solid-State Cherenkov Detector

« With the trigger of data collection from the stacks, the signal

from the central Cherenkov detector is collected via fast UV
photodetectors

— The collected Cherenkov light emitted by particles over 200
MeV/amu can be correlated to ion Z and velocity

* Requires solid-state fast UV detectors in place of PMTs

— Typically photomultiplier tubes (PMTs) are used for their sensitivity
and fast response; no room for that in this application

— Investigated solid-state UV detectors, both COTS & custom
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Solid-State UV Detector Investigation

* Fabricated a 2 mm? active area ZnO detector and compared

to COTS SIC and GaP photodiodes at 254 nm and 370 nm
light sources

— ZnO detector most sensitive at both wavelengths
— GaP diode better than SIiC at 370 nm
— SIC diode as good as GaP at 254 nm

Diode ZnO SiC GaP
(per Volt bias) QA JFEE)) (-10V bias)
Average Dark Current 1.8 £ 0.2 nAmps < 50 pAmps 100 + 20 pAmps
Relative Output to Hg |
e e 58.7 + 3.8 0.196 + 0.029 1
(254 nm)

Relative Output to LED source 14.99 + 5.6 0.041 + 0.0024 1
(370 nm)

Relative Output to Hg lamp
(254 nm) per unit area (mm-)

Relati { LED
elative Output to LED source 36+13 0.207 + 0.012 1
(370 nm) per unit area (mm-) i

14.09 £ 0.91 0.981 + 0.147 1



Solid-State UV Detector Investigation -

« ZnO detector with 20 um electrode spacing, low
resistance should have a response time of ~1 ns
— Package not developed

« GaP strong response at 370 nm makes it an excellent
candidate for use in scintillator trigger/veto counters

« SIC diode can be a backup to the ZnO detector
assuming a fast response time can be achieved




Technology Challenges isA)

Technology

Component Challenge

Approach

GRC Harsh Environment

Fast Cherenkov ZnO UV detector : .
Detector nackaging Packaging expertise,
Examine SiC diode back-up
Trigger/Veto GaP photodiodes Compare COTS to custom
Scintillator Counters  with fiber scintillators packaging
Large Area WGB GRC Harsh Environment

SiC Diode array Packaging expertise,

LET Detectors ) . :
Examine single-crystal option

Signal Conditioning
Electronics

GRC Space Electronics

Space available :
expertise

More reliance on lower
Detector Integration Mass limit density metals (Al, Ti);
Higher fidelity models




Summary

« Radiation detector issues impact a variety of missions in
both air and space

 GRC is leveraging expertise in harsh environment thin
films, SIC devices & harsh environment packaging, micro-
optics, and space-based instrumentation to advance
radiation detector technology

« Application concept system for a compact, full-field space
radiation detector system outlined

« Detector development proceeding in WBG devices for
LET and Cherenkov detectors

« Technology challenges identified and are being
addressed

.
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